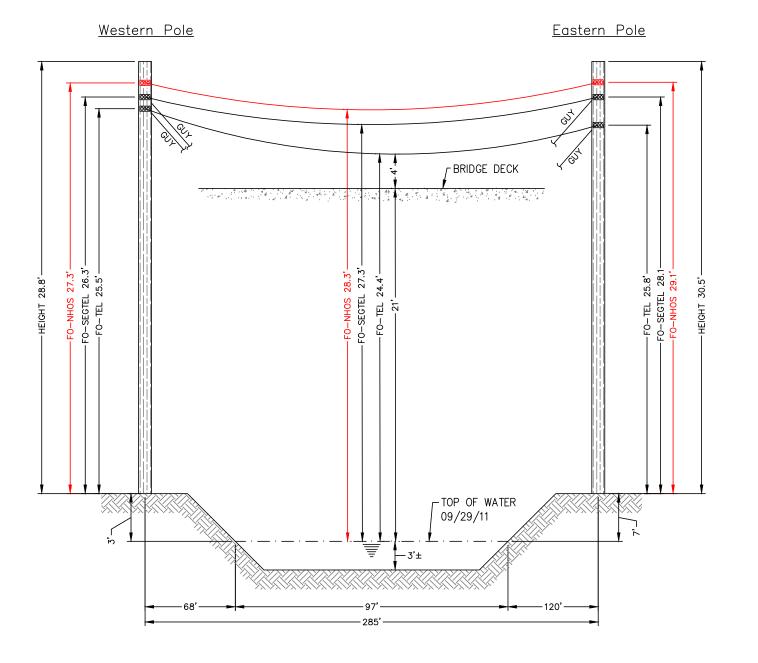


Spanmaster ® Release 3.1 Sag / Tension Computations


Waveguide River and Rail Crossings

						E*A LOAD	MAX.
	X-SECT	EFF	NOMINAL	EFF.EXP.	CABLE	BEARING	RATED
	AREA	MODULUS	DIAM	COEFF.	WEIGHT	CAPACITY	LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	665
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	65
Bundle			1.108		0.3170		
1/4"6.6mEHS ORF-O-288-LN	(sq.in) 0.0352	(psi) 2.60E+07	(in) 0.250 0.858	(1/F) 5.60E-06	(lb/ft) 0.1210 0.1960	(lbs) 914940 155982	(lbs) 66

NESC RESULTS

Loading Condition	Temp.	Load	Ice Thick	Wind Constant	Wind Load	Load + Const	Sag	Tension	Chg From Input Conditions	Point 142.5	Sag Comp	Sag Comp	Vector Angle
Rule 251 - Heavy	0.0	1.000	.50	.3	1b/sq ft 4.0	1.793	ft 6.85	ь 2649	0.13	6.87	3.23	π 6.04	Deg 28.1
232A1	120.0	0.000	.00	.0	0.0	0.317	3.34	963	0.01	3.34	0.00	3.34	0.0

ZJZAI	120.0 0.000	.00	.0	0.0	0.517	5.54	303	0.01	3.34 0.0	0 3.34 0.0
					Ten	np	Midspar	Tension	% Length	Clearance
Span L	_ength = 285.00 ft				(F)	Sag (ft)	(lb)	Change	
	Sag = 2.85 ft (34.2 in)								
	Tension = 1,129 lb				-40		2.04	1,570	-0.01	N/A
N	//ax Load = 6,650 lb				-30		2.10	1,527	-0.01	N/A
	Usable load (60%)		lb		-20		2.16	1,483	-0.01	N/A
	ary Length = 285.076	ft			-10		2.23	1,441	-0.01	N/A
	Free Length @				.0)	2.29	1,399	-0.01	N/A
Ins	talled Temperature =	284.72	5 ft		10.	.0	2.36	1,358	-0.01	N/A
					20.	.0	2.44	1,317	-0.01	N/A
	ded Strand				30.	.0	2.51	1,277	-0.01	N/A
	g = 1.31 ft (15.7 in)	0.46 %			40.	.0	2.59	1,238	0.00	N/A
Ien	sion = 937 lb				50.	.0	2.68	1,200	0.00	N/A
					60.	.0	2.76	1,163	0.00	N/A
					70.	.0	2.85	1,127	0.00	N/A
					80.	.0	2.94	1,092	0.00	N/A
					90.	.0	3.04	1,058	0.00	N/A
					100	0.0	3.13	1,025	0.01	N/A
					110	.0	3.24	993	0.01	N/A
					120	0.0	3.34	963	0.01	N/A
					130	0.0	3.45	933	0.01	N/A
					140	0.0	3.55	905	0.01	N/A

E-NT - T-374/50(Existing jointly owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

Not to Scale

E-NT - T-374/51(Existing jointly owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

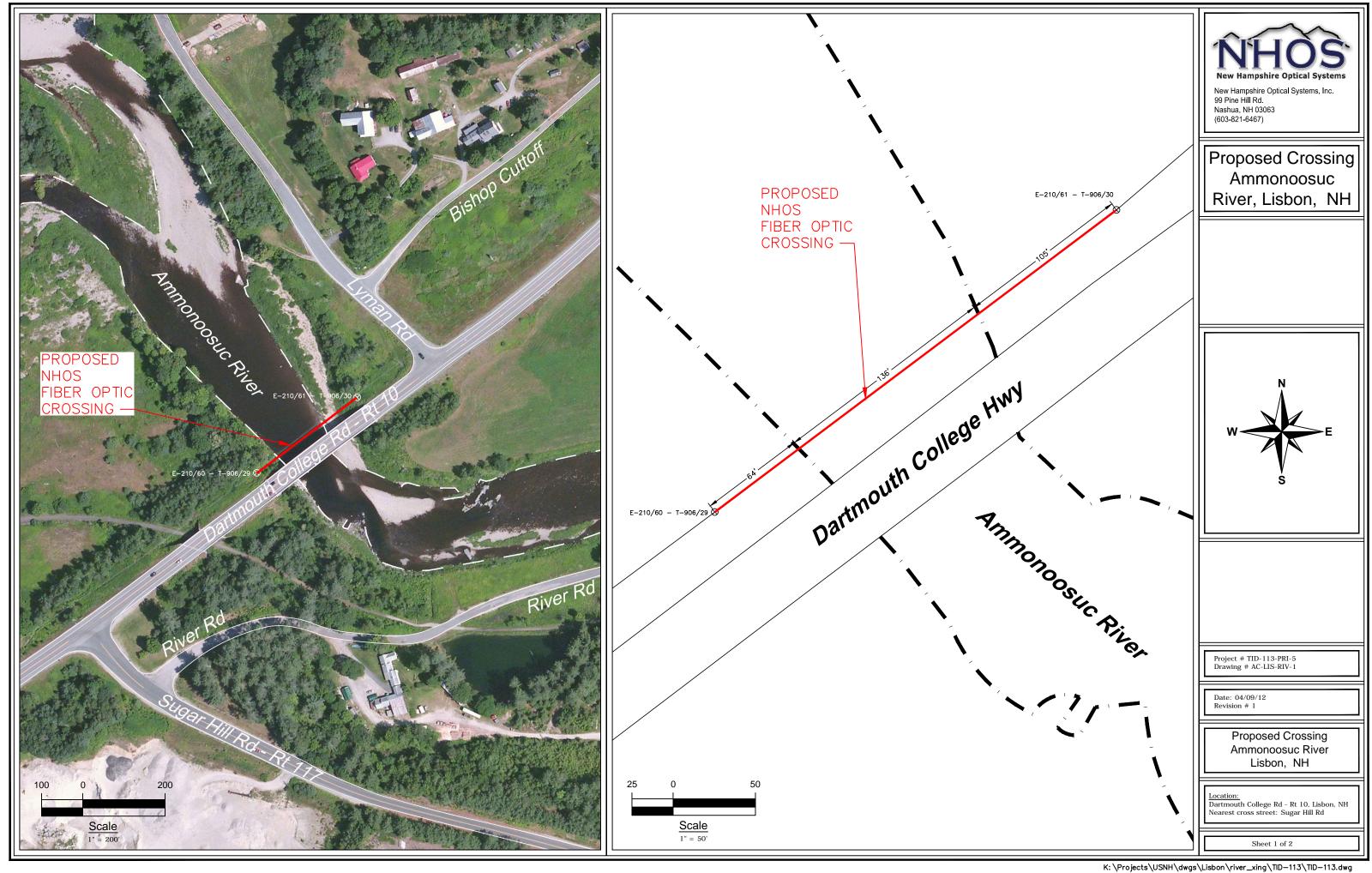
Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the brook. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

E-NT - T-374/51

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed Crossing Wild Ammonoosuc River, Bath, NH


- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on 09/29/11.
- 2. The horizontal distance between the nearest bridge edge and the existing overhead wires is approximately 67'.
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is approximately 4'.
- The vertical distance between the top of water and bridge deck is approximately 21'.
- The waterway is classified as not suitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained between the lowest conductor and 10 year
- Based on the FEMA Flood Insurance Rate Map for Grafton County (County Map Number 33009C0240E Panel 240 of 1185) dated 02/20/08 there is currently no FEMA Flood Profile information available for the Wild Ammonoosuc River in this area. A 10 year flood elevation could not be determined.
- Vertical distances are representative of attachment heights after utility make ready moves are completed.


Project # TID-109-PRI-15

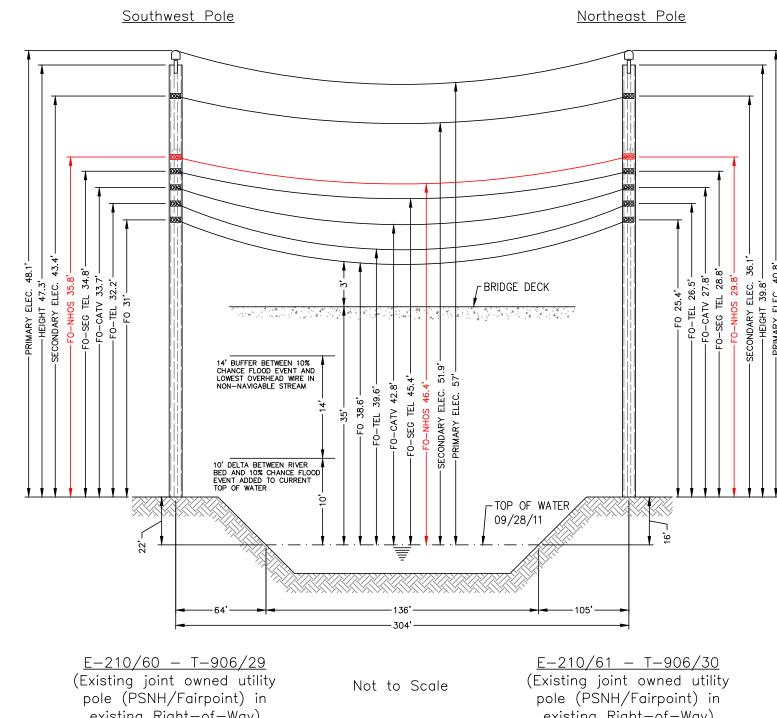
Proposed Crossing Wild Ammonoosuc River Bath, NH

Rum Hill Rd - Rt 10, Bath, NH

Sheet 2 of 2

Spanmaster ® Release 3.1 Sag / Tension Computations

	X-SECT AREA	EFF MODULUS	NOMINAL DIAM	EFF.EXP.	CABLE WEIGHT	E*A LOAD BEARING CAPACITY	MAX. RATED LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	(1)	0.250	5.60E-06	0.1210	()	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Rundle			1 108		0.3170		


Waveguide

River and Rail Crossings

NESC RESULTS

Loading Condition	Temp.	Ice Load lb/ft	Ice Thick in	Wind Constant lb/ft	Wind Load lb/sq ft	Load + Const	Sag	Tension lb	Chg From Input Conditions	Point 152 ft	Sag Comp	Sag Comp	Vector Angle Dea
Rule 251 - Heavy 232A1	0.0			.3		1.793 0.317		2775		7.46 3.54	3.50 0.00	6.56 3.54	28.1

232A I	120.0 0.000	.00	.0	0.0	0.517 5.54	1033	0.01	3.54 0.0	0.0
					Temp	Midspan	Tension	% Length	Clearance
Span Lengt	h = 304.00 ft				(F)	Sag (ft)	(lb)	Change	
Span Sag =	: 3.04 ft (36.5 in)							
Span Tension	on = 1,205 lb				-40.0	2.21	1,649	-0.01	N/A
. Max L	oad = 6,650 lb				-30.0	2.27	1,605	-0.01	N/A
Usa	able load (60%)	= 3,990	lb		-20.0	2.34	1,562	-0.01	N/A
Catenary Le	ength = 304.081	ft			-10.0	2.40	1,519	-0.01	N/A
Stress Free	Length @				.0	2.47	1,477	-0.01	N/A
Installed	Temperature =	303.68	1 ft		10.0	2.54	1.435	-0.01	N/A
					20.0	2.62	1,394	-0.01	N/A
Unloaded S	trand				30.0	2.70	1,354	-0.01	N/A
Sag = 1.	38 ft (16.6 in)	0.45 %			40.0	2.78	1,315	0.00	N/A
Tension	= 1,011 lb				50.0	2.86	1,277	0.00	N/A
					60.0	2.95	1,239	0.00	N/A
					70.0	3.04	1,202	0.00	N/A
					80.0	3.13	1,166	0.00	N/A
					90.0	3.23	1,131	0.00	N/A
					100.0	3.33	1,098	0.01	N/A
					110.0	3.43	1,065	0.01	N/A
					120.0	3.54	1,033	0.01	N/A
					130.0	3.65	1,003	0.01	N/A
					140.0	3.76	973	0.01	N/A

existing Right-of-Way)

existing Right-of-Way)

E-210/60 - T-906/29

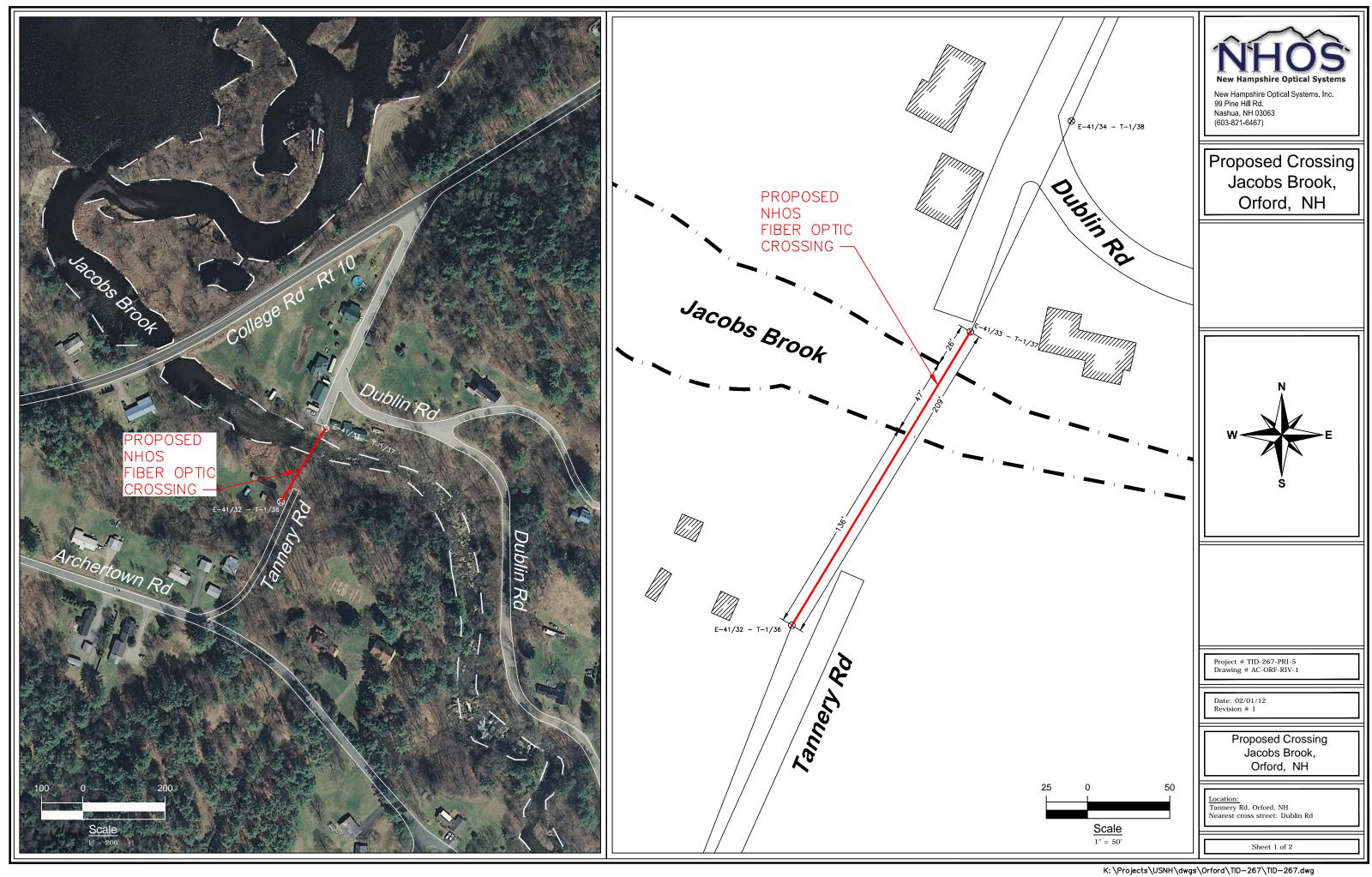
Construction Notes:

NHOS proposes to install a 1/4 inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed Crossing Ammonoosuc River, Lisbon, NH

Notes:

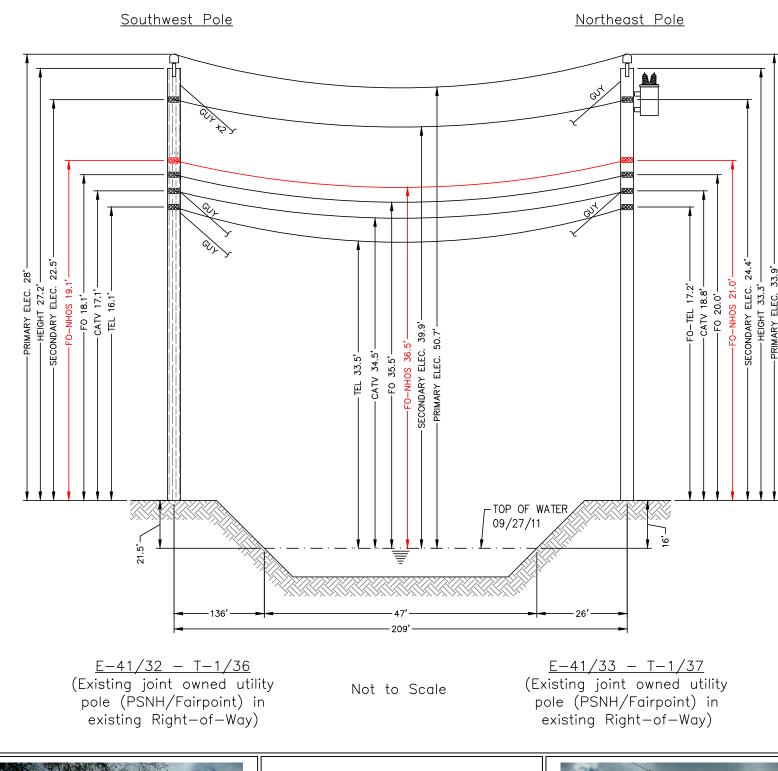

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on 09/29/11.
- The horizontal distance between the nearest bridge edge and the existing overhead wires is approximately 31'.
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is approximately 3'.
- 4. The vertical distance between the top of water and bridge deck is approximately 35'.
- The waterway is classified as not suitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained between the lowest conductor and 10 year
- 6. Based on the FEMA Flood Insurance Rate Map for Grafton County (County Map Number 33009C0235E Panel 235 of 1185) dated 02/20/08, and the FEMA cross section data for the Ammonoosuc River (page 08P), the elevation of the stream bed is 591' and the elevation of the 10 year flood event is 601'. A conservative 10 year flood elevation was calculated by adding the delta between the river bed elevation and the 10 year flood elevation to the surveyed water level. A 14' buffer (non-navigable streams) was added to
- Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-113-PRI-5

Proposed Crossing Ammonoosuc River Lisbon, NH

Dartmouth College Rd - Rt 10, Lisbon, NH Nearest cross street: Sugar Hill Rd

Sheet 2 of 2


Spanmaster ® Release 3.1 Sag / Tension Computations

Octobrid Octobri		EFF MODULUS	NOMINAL DIAM	EFF.EXP. COEFF.	CABLE WEIGHT	E*A LOAD BEARING CAPACITY	MAX. RATED LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Bundle			1.108		0.3170		

Waveguide River and Rail Crossings

NESC	RFSI	ULTS

Condition	Temp. (F)	Load lb/ft	Thick in	Constant Ib/ft	Load lb/sq ft	+ Const lb/ft	ft	lension	Input Conditions	104.5 ft	Comp ft	Comp ft	Angle Deg
Rule 251 - Heavy	0.0 120 0	1.000	.50	.3	4.0	1.793	4.60	2123 684	0.10	4.61 2.53		4.06	
232A1 Span Length = Span Sag = 2. Span Tension Max Loa	120.0 = 209.0 09 ft = 828 d = 6, e load gth = 2 ength emper	0.000 00 ft (25.1 in lb (650 lb (60%) 09.056 @ rature =	.00) = 3,99 ft	.0 0 lb 67 ft	0.0	0.317 Tel (F -40 -30 -20 -10 10 20 30 40 50 60 70 80 90	2.53 mp 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Midspa Sag (ft 1.38 1.43 1.48 1.59 1.66 1.72 1.79 1.86 1.93 2.01 2.09 2.17 2.29 2.35	0.01 n Tension	2.53	0.00 ggh (gge 2 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.0 o.o
						110 120	0.0	2.44 2.53	710 684	0.0	1	N/A N/A	
						130 140	0.0	2.62 2.72	660 637	0.00	2	N/A N/A	

E-41/32 - T-1/36

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the brook. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

E-41/33 - T-1/37

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed Crossing Jacobs Brook, Orford, NH

Notes

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on 09/27/11.
- The vertical distance between the top of water and lowest existing overhead wire is approximately 35'.
- 3. At the time of the site survey there was no bridge located at this crossing location.
- The waterway is classified as not suitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained between the lowest conductor and 10 year floodplain.
- Based on the FEMA Flood Insurance Rate Maps for Grafton County (County Maps Numbered 33009C0565E & 33009C0545E) both dated 02/20/08 there is no FEMA flood profile data available for Jacobs Brook in this area. A 10 year flood elevation could not be determined. The 100 year (1%) flood elevation is approximately 408".
- Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-267-PRI-5 Drawing # AC-ORF-RIV-1

Revision # 1

Proposed Crossing Jacobs Brook, Orford, NH

Location: Tannery Rd, Orford, NH Nearest cross street: Dublin Rd

Sheet 2 of 2